
Reverse Engineering and its Application in Modern Software

Scenario and Implications

Anupam Singh
3rd year Computer Science and Engineering

IEEE Student Member

Vellore Institute of Technology

Anupam Das
3rd year Computer Science and Engineering

IEEE Student Member

Vellore Institute of Technology

Abstract: This paper dwells into the

concept of Software Reengineering

and its scope, demand and

effectiveness in the contemporary

professional world. The authors give

an introduction and analyses of the

present scenario of software trends

followed in the industry and highlight

various suggestions and improvements

to cut down costs and fasten the

process of Software development. The

comparative study of various

Reengineering tools and their

evolvement to suit the changing needs

have also been highlighted. The paper

concludes with a prophetic look at the

emergent technologies in this field and

paves path for the scope of further

research.

Keywords: Re-Engineering, CASE,

DBMS, Legacy Systems

An Introduction to the Science of

Looking Backwards

"Living backwards!" Alice repeated in great

astonishment.

"I never heard of such a thing!"

— Lewis Carroll



Reverse-engineering is the process of

taking a piece of software or hardware,

analyzing its functions and information

flow and then translating those

processes into a human-readable

format. The goal is often to duplicate

or improve upon the original item's

functionality. In the software field

Reverse Engineering is the process of

analyzing the software with the

objective of   recovering its design and

specification. Reverse engineering is

an important part of Software re-

engineering process.

Need for Re-Engineering Process

Since the mid 1960s, investment in

software by business, government and

other organizations has grown incredibly

quickly. Software systems are used in

almost all organizational activities.

These systems must be maintained and

evolve as new requirements emerge and

new hardware is introduced into the

organization.

In some business, it has been estimated

that 80% of all software expenditure is

consumed by system maintenance and

evolution. The number of systems to be

maintained is still increasing. There is a

huge backlog of maintenance requests.

This means that it is sometimes

impossible for organizations to invest in

new systems to improve organizational

efficiency.

Old systems that must still be maintained

are called as legacy systems. These old

systems normally use immense amount

of code and are generally written in

COBOL or FORTRAN which are no

longer in use. Moreover these languages

have the limitations of providing limited

program structuring facilities and

support for data structuring. So the

legacy systems may be poorly structured

and their documentation may be out of

date or non existent.

But in spite of having all these

limitations many legacy systems are

critical to the operation of the

organization which uses them. They

embed business knowledge and

procedures which have emerged over the

lifetime of the system. This knowledge

may not be documented elsewhere. The

risk of scrapping and rewriting these

systems is very high. Much of this

knowledge would have to be

rediscovered by trial and error.

Consequently, organizations cannot

afford to make their legacy system

obsolete. They must somehow keep

them in operation and continue to adapt

them to new requirements and here only



comes the role of software re-

engineering.

Software re-engineering is concerned

with taking existing legacy systems and

reimplementing them to make them

more maintainable. As part of this

reengineering process, the system may

be redocumented or restructured. It may

be translated to a modern programming

language, implemented on a distributed

platform rather than a mainframe or its

data may be migrated to a different

database management system. These all

can only be done if a better

understanding of the subject system is

developed and such understanding is

provided by reverse engineering which

enables the re-engineering process to

derive the design and specification of the

system from its source code.

Objectives of Reverse Engineering

What are we trying to accomplish with

reverse engineering? The primary

purpose of reverse engineering a

software system is to increase the overall

comprehensibility of the system for both

maintenance and new development.

There are six key objectives that will

guide its direction as the technology

matures:

1. Cope with complexity:

We must develop methods to better deal

with the shear volume and complexity of

systems. A key to controlling these

attributes is automated support. Reverse-

engineering

methods and tools, combined with

CASE (Computer-aided software

engineering) environments, will provide

a way to extract relevant information so

decision makers can control the process

and the product in systems evolution. .

2. Generate alternate views:

Graphical representations have long

been accepted as comprehension aids.

However, creating and maintaining them

continues to be a bottleneck in the

process. Reverse-engineering tools

facilitate the generation or regeneration

of graphical representations from other

forms. While many designers work from

a single, primary

perspective (like dataflow diagrams),

reverse-engineering tools can generate

additional views from other perspectives

(like control-flow diagrams, structure

charts, and entity-relationship diagrams)

to aid the review and verification

process. We can also create alternate

forms of non graphical representations

with reverse-engineering tools to form



an important part of system

documentation.

3. Recover lost information:

The continuing evolution of large, long-

lived systems leads to lost information

about the system design. Modifications

are frequently not reflected in

documentation, particularly

at a higher level than the code itself.

While it is no substitute for preserving

design history in the first place, reverse

engineering - particularly design

recovery – is our way to salvage

whatever we can from the existing

systems. It lets us get a handle on

systems when we don’t understand what

they do or how their individual programs

interact as a system.

4. Detect side effects:

Both haphazard initial design and

successive modifications can lead to

unintended ramifications and side effects

that impede a system’s performance in

subtle ways. As

Figure 1 shows, reverse engineering can

provide observations beyond those we

can

obtain with a forward-engineering

perspective, and it can help detect

anomalies and problems before users

report them as bugs.

5. Synthesize higher abstractions:

 Reverse engineering requires methods

and techniques for creating alternate

views that transcend to higher

abstraction levels. There is debate in the

software community as to how

completely the process can be

automated. Clearly, expert system

technology will play a major role in

achieving the full potential of generating

high level abstractions.

6. Facilitate reuse:

A significant issue in the movement

toward software reusability is the large



body of existing software assets. Reverse

engineering can help detect candidates

for reusable software and are

components from present systems.

Reverse Engineering Process

The reverse engineering process is

illustrated in fig2.The process starts with

an analysis phase. During this phase the

system is analyzed using automated

tools to discover its structure. In itself,

this is not enough to re-create the system

design. Engineers then work with the

system source code and its structural

model. They add information to this

which they have collected by

understanding the system. All of this

information is maintained in some

information store, usually in the form of

directed graph. The program code is also

stored.

Information store browsers may be

available to compare the graph structure

and the code. These may be used to add

further information that has been

inferred about the design. Documents of

various types may be generated from this

information. These might include

program and data structure programs and

traceability matrices. Traceability

matrices show where entities in the

system are defined and referenced. The

process of document generation is an

iterative one as the design information is

used to further refine the information

held in the system repository.

As part of the reverse engineering

process, various tools for program

understanding may be used. These

usually present different kinds of system

view and allow easy navigation through

the source code. After the system design

documentation has been generated,

further information may be added to the

information store to help re-create the

system specifications. This usually

involves further manual annotations to

the system structure. The system

specifications cannot be deduced

automatically from the system model.

Sub areas of Reverse Engineering

 Reverse engineering is the process of

analyzing a subject system to:-

1. Identify the system’s components and

their interrelationships and

 FIGURE 2



2. Create representations of the system

in another form or at a higher level of

abstraction.

Reverse engineering in and of itself does

not involve changing the subject system

or creating a new system based on the

reverse-engineered subject system. It is a

process of examination, not a process of

change or replication.

There are many sub areas of reverse

engineering. Two sub areas that are

widely referred to are redocumentation

and design recovery.

1. Redocumentation:

Redocumentation is the creation or

revision of a semantically equivalent

representation within the same relative

abstraction level. The resulting forms of

representation are usually considered

alternate views (for example, dataflow,

data structure, and control flow)

intended for a human audience.

Redocumentation is the simplest and

oldest form of reverse engineering, and

many consider it to be an unintrusive,

weak form of restructuring. The “re-”

prefix implies that the intent is to

recover documentation about the subject

system that existed or should have

existed.

Some common tools used to perform

redocumentation are pretty printers

(which display a code listing in an

improved form), diagram generators

(which create diagrams directly from

code, reflecting control flow or code

structure), and cross-reference listing

generators. A key goal of these tools is

to provide easier ways to visualize

relationships among program

components so that we can recognize

and follow paths clearly.

2. Design recovery:

Design recovery is a subset of reverse

engineering in which domain

knowledge, external information, and

deduction or fuzzy reasoning are added

to the observations of the subject system

to identify meaningful higher level

abstractions beyond those obtained

directly by examining the system itself.

Design recovery is distinguished by the

sources and span of information it

should handle. Design recovery recreates

design abstractions from a combination

of code, existing design documentation

(if available), personal experience, and

general knowledge about problem and

application domains. Design recovery

must reproduce all of the information

required for a person to fully understand

what a program does, how it does it, why

it does it, and so forth.



Reverse Engineering Tools

Techniques used to aid program

understanding can be grouped into three

categories: unaided browsing,

leveraging corporate knowledge and

experience, and computer-aided

techniques like reverse engineering.

Unaided browsing is essentially

“humanware”: the software engineer

manually flips through source code in

printed form or browses it online,

perhaps using the file system as a

navigation aid. This approach has

inherent limitations based on the amount

of information that a software engineer

may be able to keep track of in his or her

head.

Leveraging corporate knowledge and

experience can be accomplished through

mentoring or by conducting informal

interviews with personnel

knowledgeable about the subject

system. This approach can be very

valuable if there are people available

who have been associated with the

system as it has evolved over time. They

carry important information in their

heads about design decisions, major

changes over time, and troublesome

subsystems. For example, corporate

memory may be able to provide

guidance on where to look when

carrying out a new maintenance activity

if it is similar to another change that took

place in the past. This approach is useful

both for gaining a big- picture

understanding of the system and for

learning about selected subsystems in

detail.

However, leveraging corporate

knowledge and experience is not always

possible. The original designers may

have left the company. The software

system may have been acquired from

another company. Or the system may

have had its maintenance

out-sourced. In these situations,

computer-aided reverse engineering is

necessary.

 A reverse-engineering environment can

manage the complexities of program

understanding by helping the software

engineer extract high-level information

from low-level artifacts, such as source

code.  This frees software engineers

from tedious, manual, and error-prone

tasks such as code reading, searching,

and pattern matching by inspection.

Adequate Reverse Engineering

 Unfortunately, the definition of reverse

engineering is not helpful to software



engineers and their managers in planning

and managing reverse engineering

efforts. In particular, it does not give any

guidance to determining the quality of

the efforts and the resulting

representations. That is, it is hard to

know when the understanding gained

adequately represents the original

program. The question we explore is

how we know if a reverse engineering

effort has produced an adequate

representation of a program. Our answer

is that a program representation

produced by reverse engineering is

adequate if it is sufficiently complete

and accurate that an automated tool is

capable of reconstructing

a program equivalent to the original

from it.

We apply two key insights to explore

adequate reverse-engineering

representations. Our first insight comes

from examining the idea of reversing the

reverse engineering process; that is, in

taking the representation that results

from reverse engineering and using

it to reconstruct a program. In order to

reduce variation and uncertainty in the

process, we want the reconstruction to

be done automatically. If we are able to

do these two tasks, representation and

generation, then we have an operational

means for determining the

completeness of our effort. The second

insight concerns the quality of the

representation; that is, how do we ensure

that our representation provides useful

insight into the program? Here we use a

model of the program’s application

domain as an external standard against

which we compare the representation as

it is built up during reverse engineering.

A domain model provides a set of

expectations for constructs in the

program and how they relate to each

other. Comparing understanding gained

while reverse engineering a program to

expectations provided by the domain

model encourages an accurate program

representation.

Research Trends in Reverse
Engineering

In summarizing the major research

trends, accomplishments, and

unanswered needs, we can divide our

discussions into three major parts. First

part concentrates on code reverse

engineering, which has been the main

focus of attention in this field over the

past decade. In contrast, data reverse

engineering, the topic of second part.

Third and the last part explores the

evaluation of reverse engineering tools.



1. Code reverse engineering:

In current research and practice, the

focus of both forward and reverse

engineering is at the code level. Forward

engineering processes are geared toward

producing quality code.

The importance of the code level is

underscored in legacy systems where

important business rules are actually

buried in the code. During the evolution

of software, change is applied to the

source code, to add function, fix defects,

and enhance quality. In systems with

poor documentation, the code is the only

reliable source of information about the

system. As a result, the process of

reverse engineering has focused on

understanding the code.

Over the past ten years, reverse

engineering research has produced a

number of capabilities for analyzing

code, including subsystem

decomposition, concept synthesis,

design, program and change pattern

matching, program slicing and dicing,

analysis of static and dynamic

dependencies, object-oriented metrics,

and software exploration and

visualization. In general, these analyses

have been successful at treating the

software at the syntactic level to address

specific information needs and to span

relatively narrow information gaps.

2. Data reverse engineering:

Most software systems for business and

industry are information systems, that is,

they maintain and process vast amounts

of persistent business data. While the

main focus of code reverse engineering

is on improving human understanding

about how this information is processed,

data reverse engineering tackles the

question of what information is stored

and how this information can be used in

a different context. Research in data

reverse engineering has been

underrepresented in the software reverse

engineering arena for two main reasons.

First, there is a traditional partition

between the database systems and

software engineering communities.

Second, code reverse engineering

appears at first sight to be more

challenging and interesting than data

reverse engineering for academic

researchers. Recently, data reverse

engineering concepts and techniques

have gained increasing attention in the

reverse engineering arena.

3. Evaluating reverse engineering tools:



Previously we have made a discussion

about the reverse engineering tools. But

a question arises as to how to measure

the success of the tools or theories that

may be selected. Many reverse

engineering tools concentrate on

extracting the structure or architecture of

a legacy system with the goal of

transferring this information into the

minds of the software engineers trying to

maintain or reuse it. That is, the tool’s

purpose is to increase the understanding

that software engineers or/and managers

have of the system being reverse

engineered. But, since there is no

agreed-upon definition or test of

understanding, it is difficult to claim that

program comprehension has been

improved when program comprehension

itself cannot be measured. Despite such

difficulty, it is generally agreed that

more effective tools could reduce the

amount of time that maintainers need to

spend understanding software or that

these tools could improve the quality of

the programs that are being maintained.

Coarse-grained analyses of these types

of results can be attempted.

Conclusion

There will always be old software that

needs to be understood. It is critical for

the software industry to deal effectively

with the problems of software evolution

and the understanding of legacy software

systems. Since the primary focus of the

industry is changing from completely

new software construction to software

maintenance and evolution, software

engineering research and education must

make some major adjustments. In

particular, more resources should be

devoted to software analysis in balance

with software construction. Program

understanding tools and methodologies

address the problems of software

evolution by helping software engineers

to understanding large and complex

software systems. Effective reverse

engineering technologies can have a

significant impact on the maintenance

and evolution of these systems.

Even if we perfect reverse engineering

technology, there are inherent high costs

and risks in evolving legacy software

systems. Developing strategies to control

these costs and risks is a key research

direction for the future. Practitioners

need a reengineering economics book,

which would serve as a guide to

determine reengineering costs and to use

economic analyses for making improved

reengineering decisions.

Moreover the most critical issue for the

next decade is to teach students about

software evolution. Computer science,

Computer Engineering, and Software



Engineering curricula, by and large,

teach software construction from scratch

and neglect to teach software

maintenance and evolution. Topics such

as software evolution, reverse

engineering, program understanding,

software reengineering, and last but not

the least software reverse engineering

must be stressed upon because reverse

engineering, used with evolving

software development technologies,

promises to provide significant

incremental enhancements to our

productivity which is our final aim.

References

1. M.G. RekoffJr., “On Reverse
Engineering,”
LEtX Trans. Systems, Man, and
Cybernetics,
March-April 1985, pp. 244-252.
2. T.J. Biggerstaff, “Design Recovery for
Maintenance and Reuse,” Complter,
July 1989,
pp. 3649.
3.”Adequate reverse engineering” by
Spencer Rugaber, Terry Shikano, R. E.
Kurt Stirewalt
4. Victor R. Basili and Harlan D. Mills.
Understanding and
Documenting Programs. IEEE
Transactions on Software
Engineering, SE-8(3):270-283, (May
1982).
5.”Software Engineering” Ian

Sommerville

6.”Reverse Engineering and Design

Recovery: A Taxonomy”

By Elliot j.Chikofsky and James H.Cross

N

About the authors:

Anupam Singh is a

Bachelor’s degree

student of Computer

Science and

Engineering at

Vellore Institute of Technology, India.

He is a student member of the IEEE,

ISTE and IEI.  His research interests

include Human Computer Interfaces,

Intelligent Systems, Reverse

Engineering and Applied Software

Engineering. He can be contacted

regarding any queries at

anupam.vit@gmail.com.

Anupam Das is a

Bachelor’s degree

student of Computer

Science and

Engineering at Vellore

Institute of Technology, India. He is a

student member of the IEEE and ISTE.

His areas of interest include Artificial

Intelligence, Software Re-Engineering

and Theory of Computation. He can be

contacted regarding queries at

anu_einstein2003@yahoo.co.in.

mailto:anupam.vit@gmail.com
mailto:anu_einstein2003@yahoo.co.in

